MANASI SHARMA

AI Research Scientist at MIT Lincoln Lab; MS in CS from Stanford Univ.; BA in CS from Columbia Univ.

Domain Expertise: Generative AI, Natural Language Processing, Machine Learning, Reinforcement Learning, Computer Vision <u>manasis@cs.stanford.edu</u> | <u>www.linkedin.com/in/manasi1</u> | <u>manasi-sharma.github.io</u> | San Francisco, CA

EDUCATION

Stanford University, Stanford, CA

M.S. in Computer Science (AI/ML Track), GPA: **3.96/4.00** Research: 'Language-Conditioned Diffusion Models for Robot Learning' under Prof. Dorsa Sadigh

Columbia University, New York, NY

B.A. in Computer Science with concentration in Physics, GPA: 3.81/4.00

Key Courses: Natural Language Processing, ML with Graphs, Trustworthy ML, Decision Making under Uncertainty, Deep Learning for Computer Vision, Data Str. & Algorithms, Prob. & Statistics, Lin. Algebra, Interactive Robotics, Robot Autonomy

WORK EXPERIENCE

MIT Lincoln Laboratory, Lexington, MA

AI Research Scientist, Artificial Intelligence Technology Group

- Spearheaded an AI project on exploring Large Language Model (LLM) explainability & trust (ICML workshop '24) & built an open-source framework for testing LLM agents (<u>llm-sandbox</u>). Conducted research on the feasibility of LLMs in highstakes decision-making, as part of a multi-year collaboration of the Lab with MIT Prof.s Philip Isola & Jacob Andreas.
- Architected an internal tool for efficient evaluation of a Retrieval Augmented Generation (RAG) system with over 15 distinct metrics & assessed it on referencing past recordings in a speech-to-text application, achieving 92% acc.

Renault-Nissan-Mitsubishi Alliance Innovation Lab, Santa Clara, CA

Research Intern, Autonomous Vehicles

• Engineered an end-to-end LiDAR 3D point-cloud classification system in Python & C++ for Nissan Autonomous Vehicles, which achieved >95% accuracy, ~2% FPR and 85% reduction in runtime on classifying real-world cars, pedestrians, cyclists, etc. The system has been deployed in Nissan Autonomous Vehicles beginning Winter '22.

Stanford University, School of Engineering, Stanford, CA

Graduate Teaching Assistant for over 4 quarters for 3 of the most popular CS classes at Stanford (>600 students):

- <u>C224N</u> (NLP, Prof. Manning), <u>CS231N</u> (CV, Prof. Fei-Fei Li) and <u>CS230</u> (Deep Learning, Prof. Andrew Ng)
- Managed weekly 'Discussion Sections' of 75+ students; held office hours, constructed & graded HWs. Received >95% excellent reviews ('Very/Extremely Effective'). Received commendation for CS 224N (tutorial featured on YouTube).

Columbia University, Department of Mathematics, New York, NY

Undergraduate Teaching Assistant for Calculus III (across 4 semesters)

RESEARCH EXPERIENCE

Stanford University, Stanford Vision Laboratory & ILIAD Robotics Lab

Research Intern (Prof. Dorsa Sadigh, Prof. Fei-Fei Li, Prof. Jiajun Wu)

- Co-led a project on using few-shot prompting for LLMs to recognize patterns in trajectory data (NIPS workshop '23) & another on using diffusion models for trajectory generation conditioned on Language.
- Led the development of the Knowledgebase for <u>iGibson</u> and <u>BEHAVIOR-1K</u>, an ImageNet-scale robotic simulation benchmark. Accepted for CoRL '22 and nominated for 'Best Paper' award. Presented live tutorial at ECCV '22.

Columbia University, Data Science Institute

Research Intern, Dept. of CS & Astronomy (Prof. Daniel Hsu and Prof. Zoltan Haiman)

• Discovered that 89% of the output of a popular neural network used in Astronomy was counterintuitively attributable to negative image regions (voids, black holes, etc.). Published results in APS Physical Review '20.

California Institute of Technology, Division of Physics, Mathematics and Astronomy

Visiting Undergraduate Research Program (VURP) Intern, Palomar Gattini-IR Group (Prof. Mansi Kasliwal)

• Pioneered the development of a flagship image classification system for Caltech's Gattini-IR Telescope using TensorFlow which achieved ~97.5% accuracy on thousands of cosmic transient sources. Published results in PASP '20. Deployed the model in the Telescope's data processing pipeline (still active), replacing the manual classification process.

Sep '21 - Jun '23

Aug '17 - Jun '21

Aug '23 - Present

San Francisco, CA (Remote)

Jun '22 - Sep '22

Mar '22 - Jun '23

Sep '21 – Jun '23

Sep '19 - Jun '21

•

Sep '19 - Jun '21

Jun '19 - Aug '19

TECHNICAL SKILLS

- Programming Languages: Proficient: Python, C++/C, ROS, CUDA, Java, JavaScript, LaTeX; Familiar: Julia, SQL, SQLite
- Frameworks: TensorFlow, Keras, PyTorch, Scikit-Learn, NLTK, PyBullet, MeshLab, NetworkX, PyG, OpenCV
- Tools: Colab/GCP, Jupyter Notebooks, Visual Studio, Git, MySQL (Familiar), Figma

PUBLICATIONS

• M. Sharma, HC Siu, et. al. "Why Would You Suggest That? Human Trust in Language Model Responses".	Jun '24
ICML Humans, Algorithmic Decision-Making and Society Workshop. https://icml.cc/virtual/2024/38213	
• M. Sharma, Y. Cui, "Exploring and Improving the Spatial Reasoning Abilities of Large Language Models".	Oct '23
NeurIPS Instruction Tuning and Following Workshop. https://neurips.cc/virtual/2023/79628	
 C. Li, C. Gokmen, M. Sharma, "BEHAVIOR-1K: A Benchmark for Embodied AI with 1,000 	June '22
Everyday Activities and Realistic Simulation" in Conference on Robot Learning (CoRL). Nominated for 'Best Pap	er'.
• J. Matilla, M. Sharma, D. Hsu, Z. Haiman, "Interpreting deep learning models for weak lensing" in	Dec '20
Physical Review D, 102(12). https://doi.org/10.1103/physrevd.102.123506	
• K. De, M.J. Hankins, M. Sharma, "Palomar Gattini-IR: Survey Overview, Data Processing System,	Feb '20
on-Sky Performance and First Results." Publications of the Astronomical Society of the Pacific, vol. 132.	
https://doi.org/10.1088/1538-3873/ab6069	

GRADUATE COURSE PROJECTS

- Debiasing Models for Out-of-domain Generalization CS224N (NLP for Deep Learning) Exceeded BERT's performance on out-of-domain question-answering data by 2.5% by using debiasing models (link).
- Crowd Aware Intent-based Reinforcement Learning CS333 (Algorithms for Interactive Robotics) Reduced collision rate in crowd navigation by 50% by leveraging human latent intent reinforcement learning (link).
- Predicting Drug Interactions with Graph Neural Networks CS224W (Machine Learning with Graphs) Used the Graph Isomorphism Network to exceed 11th place on ogbl-ddli leaderboard (link, selected for course website).
- Optimizing Wind Turbine Placement Subject to Turbine Wakes CS238 (Decision Making Under Uncertainty) Applied Q-Learning to windfarms to generate sensible layouts that maximize power, subject to wake constraints (link).
- LIMES: LIME for Image Segmentation CS329T (Trustworthy Machine Learning) Devised a LIME algorithm variant for facial segmentation that achieves explainability like gradient-based methods.
- Monte-Carlo Tree Search Player CS227B (General Game Playing) Designed a player to play any game, using MCTS, multi-threating, grounding, etc.; placed 8th in the class (link).

LEADERSHIP ROLES

Graduate Community Chair, Women in Computer Science, Stanford University	Jun '22 – Jun'23
 Founder & Project Leader, <u>COVID-19 Public Hub</u> website highlighting Columbia research 	Apr '20 - Jun '21
 Corporate Chair, Women in Computer Science, Columbia University 	Apr '20 - Jun '21
 Class 3 Curriculum Developer (AI section), Girls Who Code, Columbia University 	Feb '20 - Aug '20
 Executive Board UG Student Coordinator, Columbia Society for Women in Physics 	Sep '18 - Sep '19
 Captain, 'Columbia Raas' Dance Team (member since Sep 2017), Columbia University 	Apr '20 - Jun '21
HONORS	
• 1 of 25 students accepted to the highly selective Pear Garage program for Entrepreneurship at Pear V	/C Oct '22
• 1 of 18 accepted to the highly selective GFSD (Graduate Fellowships for STEM Diversity) Program	Mar '22
 1 of 50 accepted into Google's CS Research Mentorship Program (<u>CSRMP</u>), Class of 2022A 	Feb '22
 Selected for the final round of the GEM Fellowship 	Jan '22
 Dean's List (in 6 out of 7 graded semesters, awarded to top 20%), Columbia University 	Fall '17 - Fall '20
• Columbia Undergraduate Research Fellowship (URF), Columbia College Summer Funding Program	May '20
 Visiting Undergraduate Research Program (VURP) Award, California Institute of Technology 	May '19
• 1 of 25 awarded Laidlaw Undergraduate Research & Leadership Scholarship, Columbia Univ.	<i>'18 - '19</i>
Andy Grove Scholarship for Intel Employees' Children. Intel Foundation	Fall '19

• Andy Grove Scholarship for Intel Employees' Children, Intel Foundation

OTHER

• Languages: Hindi (fluent), Spanish (intermediate)